Abstract

Through boundary integral simulations and asymptotic analysis, we investigate the effect of a finite Navier slip length on the rheological proprieties of a dilute two-dimensional suspension of plate-like particles in the creeping flow limit. Specifically, we study the effects of Navier slip, particle thickness and Péclet number on the effective shear viscosity and average normal stress difference of an isolated two-dimensional plate-like particle in an unbounded shear flow field. We find that Navier slip induces a significant reduction in the effective viscosity and increases the average normal stress difference. The effect of slip becomes more enhanced as the thickness of the particle decreases and as the Péclet number increases. Remarkably, the analysis suggests that it is theoretically possible for a dilute suspension of slip plate-like particles at high Péclet numbers to have a shear viscosity smaller than that of the suspending fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call