Abstract

Alzheimer's disease (AD) is the most common form of dementia characterized by a progressive decline in cognitive function. The serotonergic system via the 5-HT1A receptor and 5-HT2A receptor is proposed to affect the cognitive process. In the present study, the effects of NAD-299 (5-HT1AR antagonist) and TCB-2 (5-HT2AR agonist) on learning and memory processes, hippocampal brain-derived neurotrophic factor (BDNF) levels, neuronal necrosis, and Aβ plaque production have been investigated on the intracerebroventricular (icv) injection of streptozotocin (STZ)-induced memory deficits in rats. Fifty-four adult male Wistar rats (250-300g) were divided into six groups (n = 9 in each group): control, sham-operated, AD (icv-STZ (3mg/kg, 10μl)), AD+NAD-299 (5μg/1μl icv for 30days), AD+TCB-2 (5μg/1μl icv for 30days), and AD+NAD-299 + TCB-2 (NAD-299 (5μg/0.5μl icv) and TCB-2 (5μg/0.5μl icv) for 30days). Following the treatment period, rats were subjected to behavioral tests of learning and memory. Then, hippocampal BDNF, amyloid-beta (Aβ) plaque, and neuronal loss were determined by ELISA Kit, Congo red staining, and Nissl staining, respectively. The results of behavioral tests showed that icv-STZ injection decreased the discrimination index in the novel object recognition (NOR) test. In the passive avoidance learning (PAL) task, icv-STZ injection significantly decreased step-through latency (STLr) and increased time spent in dark compartment (TDC). Treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 attenuated the STZ-induced memory impairment in both NOR and PAL tasks. icv-STZ induced a decrease in hippocampal BDNF levels and increased Aβ plaques production in the brain, whereas treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced Aβ plaques in the brain and increased the hippocampal BDNF level. Results of Nissl staining showed that icv-STZ injection increased neuronal loss in the hippocampus, while treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced hippocampal neurodegeneration. These findings suggest that 5-HT1AR blockade by NAD-299 and 5-HT2AR activation by TCB-2 improve cognitive dysfunction in icv-STZ-treated rats, and these drugs may potentially prevent the progression of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call