Abstract

ABSTRACTThe effect of indigenous soil and selected mycorrhizal inoculation and phosphorus (P) applications on wheat yield, root infection and nutrient uptake was monitored for two successive years under field conditions. In addition, phosphorus efficiency and inoculation effectiveness (IE) were determined. Wheat (Triticum aestivum L.) plants were used as host plants in a Menzilat soil series (Typic Xerofluvents) in the Mediterranean coastal region of Turkey. Three levels of phosphorus were applied with Glomus mosseae to wheat plants over two successive years. Mycorrhizal inoculation significantly increased root colonization. G. mosseae-inoculated plants in both years exhibited a two-fold higher root colonization than the indigenous mycorrhizal colonization. Compared with non-inoculated plants, mycorrhizal inoculation increased wheat yield for both years. In addition, increasing P fertilizer levels enhanced the wheat grain yield. In both years, the inoculum efficiency (IE) decreased with increasing P level addition. Phosphorus efficiency is higher under low P application than the higher P application. However, with mycorrhizal inoculation P efficiency is higher than the non-inoculated treatment.The effects of mycorrhizal inoculation on plant nutrient concentrations were determined: mycorrhiza-inoculated plants exhibited a higher zinc (Zn), manganese (Mn), copper (Cu), iron (Fe) nutrients concentration than non-inoculated plants. After two years of field experiments, it is concluded that mycorrhizal inoculation can be used in large arable areas; however, it is also very important to manage the indigenous mycorrhiza of arable land.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call