Abstract

Music is considered a powerful brain stimulus, as listening to it can activate several brain networks. Music of different kinds and genres may have a different effect on the human brain. The goal of this study is to investigate the change in the brain’s functional connectivity (FC) when music is used as a stimulus. Secondly, the effect of listening to the subject’s favorite music is compared with listening to specifically formulated relaxing music with alpha binaural beats. Finally, the effect of the duration of music listening is studied. Subjects’ electroencephalographic (EEG) signals were captured as they listened to favorite and relaxing music. After preprocessing and artifact removal, the EEG recordings were decomposed into the delta, theta, alpha, and beta frequency bands, and the grand-averaged connectivity matrices were generated using Inter-Site Phase Clustering (ISPC) for each frequency band and each type of music. Furthermore, each lobe of the brain was analyzed separately to understand the effect of music on specific regions of the brain. EEG-FC among different channels was accessed by using graph theory and Network-based Statistics (NBS). To determine the significance of the changes in brain networks after listening to music, statistical analysis was conducted using Analysis of Variance (ANOVA) and t-test. The study of listening to music for a short duration verifies that either favorite or preferred music can affect the FC of the subject and induce a relaxation state. The short duration study also verifies a significant (ANOVA and t-test: p < 0.05) effectiveness of relaxing music over favorite music to induce relaxation and alertness in the subject. In the study of long duration, it is concluded that listening to relaxing music can increase functional connectivity and connections strength in the frontal lobe of the subject. A significant increase (ANOVA and t-test: p < 0.05) in FC in alpha and theta band and a significant decrease (ANOVA and t-test: p < 0.05) in FC in beta band in the frontal and parietal lobe of the brain verifies the hypothesis that the relaxing music can help the subject to achieve relaxation, activeness, and alertness.

Highlights

  • IntroductionResearch has shown that music can have a strong effect on humans

  • Music is considered a source of entertainment and a potent stimulator of brain waves.Research has shown that music can have a strong effect on humans

  • The functional connectivity (FC) of the brain in each frequency band can be observed from network density and node strength

Read more

Summary

Introduction

Research has shown that music can have a strong effect on humans. It can relieve anxiety [1], depression [2], and stress [3]; enhance mood [4]; and increase spatial awareness [5]. Especially classical music, can relax the mind and body of a subject [7], and the listener enters a deeply relaxed state This can be useful for physiological functions, such as decreasing the heart rate, blood pressure, and the secretion of stress hormones [8]. Researchers have been studying the effect of music, mood [10], and rhythms using EEG. Depression, anxiety, learning disabilities, and autism can potentially be cured by using music-based NFT [14,15,16]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.