Abstract
High density polyethylene blow modling resins have been identified as a primary material for solid waste minimization and recycling. An experimental study into the effect of multiple extrusion cycles on the properties of a virgin homopolymer, virgin copolymer, natural post consumer, and mixed color post consumer blow molding resin was conducted. Rheological properties such as shear and elongational viscosity and elastic modulus were studied in the context of changes experienced during recycling. The G′-G′ (elastic storage and loss modulus) crossover point was used to measure relative changes in the polydispersity index and molecular weight distribution (MWD). It is also shown that extrudate swell and sag change after multiple extrusion passes. Environmental stress crack resistance was also measured. A rationale for the significant decrease in the environmental stress crack resistance of the virgin copolymer resin is presented. The results are analyzed in terms of known degradation mechanisms such as chain scission and crosslinking, and their relationship to the molecular structure. © 1997 John Wiley & Sons, Inc. Adv in Polym Techn 16: 11–24, 1997
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.