Abstract
High dielectric constant ceramics fillers are widely used as fillers in polymer matrix to prepare high performance dielectric composites. Homogeneous filler distribution in these composites films is found to be quite difficult to achieve balance between high dielectric constant and high breakdown strength. Herein, multilayer structured composites films containing nickelous hydroxide (Ni(OH)2) as fillers, with different multilayered structures were designed and prepared, including 2–5 layers structure with various filler distribution. The effects of multilayer structure on the dielectric performance are explored by keeping the overall filler content constant. Combined with computer simulation, it is suggested that the variation in filler distribution in these films can effectively redistribute electric field intensity. Meanwhile, the dielectric constant and breakdown strength of the overall composites can be adjusted by changing the volume ratio between high filler content layer and low filler content layer. It is noted that at least 1/3 of the overall film volume should be occupied by a high breakdown strength layer to keep rather high overall breakdown strength. Moreover, high dielectric constant layer should be the outer layers to achieve overall high dielectric constant. Among all the layered structures investigated, the maximum energy density of 6.03 J/cm3 is obtained for film with a 3-layer nonsequential arrangement structure, which is 68% higher than single layer film with identical composition. This study provides some reference value for the preparation of multilayered dielectric polymer composites films for energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.