Abstract
In halothane-anesthetized rats, we characterized the responses of single neurons in the nuclei of medial thalamus (MT), specifically the mediodorsal thalamic nucleus (MD) and the nucleus submedius (Sm), to a noxious visceral stimulus (colorectal balloon distension, CRD), and studied the effects of intravenous morphine (Mor) on these responses using standard extracellular microelectrode recording techniques. 62 MD and 46 Sm neurons were isolated on the basis of spontaneous activity. 47 of the MD neurons (76%) responded to CRD, of which 70% had excitatory and 30% had inhibitory responses. 38 of the Sm neurons (83%) responded to CRD, of which 89% had excitatory and 11% had inhibitory responses. Responses of MD and Sm neurons excited by CRD were related significantly to distension pressure (20–100 mmHg), with maximum excitation occurring at 60 and 100 mmHg, respectively. MD neurons inhibited by CRD also had graded responses to graded CRD, with maximum inhibition occurring at 80 mmHg. The responses to noxious (pinch, heat) and nonnoxious (tap, brush) cutaneous stimuli were studied in 59 of the MD and 44 of the Sm neurons isolated. 22 of the MD neurons (37%) studied had cutaneous receptive fields, of which 59% were large and bilateral, 41% were small and usually contralateral receptive fields. 55% of these neurons were nociceptive-specific, 45% responded to both noxious and nonnoxious cutaneous stimulation. 29 of the Sm neurons (66%) studied had cutaneous receptive fields, of which 72% were large and usually bilateral, 14% were small and bilateral, 14% were small and contralateral receptive fields. 90% of these neurons were nociceptive-specific, 10% responded to both noxious and nonnoxious stimulation. No MD or Sm neurons responded exclusively to nonnoxious cutaneous stimulation. Mor (0.125, 0.25, 0.5 and 1 mg/kg IV) attenuated MD and Sm neuronal excitatory responses to CRD in a dose-dependent fashion, abolishing evoked activity with a dose of 0.5 mg/kg ( p<0.05) and 1 mg/kg ( p<0.05), respectively. Naloxone (0.4 mg/kg IV) reversed the effects of Mor. Mor and naloxone had no effects on spontaneous activity. These data support the involvement of MD and Sm neurons in visceral nociception, and are consistent with a role of Sm in affective-motivational, and MD in both sensory-discriminative and affective-motivational aspects of nociception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.