Abstract

Friction stir processing (FSP) is an effective method for incorporating ceramic nanoparticles into metal matrix composites. This study investigated the effects of single and multiple additions of BN, VC, and SiC nanoparticles on the microstructure refinement and tribological behavior of an AA2024 alloy-based nanocomposite matrix fabricated by FSP. The results showed that adding ceramic nanoparticles, either singly or in combination, led to significant refinement of grain structure and improved wear resistance of the AA2024 alloy-based nanocomposite matrix. Additionally, the study found that combining BN, SiC, and VC nanoparticles produced the most effective effects on refining and reducing grain size. The microhardness behavior of the composite surface resulting from the hybrid particles showed a significant improvement, reaching 94% more than the base alloy. Overall, these results indicate that the multiple additions of ceramic nanoparticles by FSP are a promising approach to improve aluminum alloys' tribological behavior and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.