Abstract

In this paper, the thermal stability and decomposition mechanism functions of 10 nitric esters including nitroglycerine (NG), pentaerythritol tetranitrate (PETN), trimethylolethane trinitrate (TMETN), dipentaerythritol hexanitrate (DiPEHN), trimethylolpropane trinitrate (TMPTN), erythritol tetranitrate (ETN), xylitol pentanitrate (XPN), sorbitol hexanitrate (SHN), mannitol hexanitrate (MHN) and nitroisobutylglycerol trinitrate (NIBGT) are determined by means of non-isothermal TG and DSC techniques. It has been found that the mean activation energies for most nitric esters are comparable at constant heating rate (around 145kJmol−1), indicating that their main decomposition pathways might be the same. The mass loss activation energies of NG, TMETN and TMPTN are less than 100kJmol−1 due to partial evaporation. Based on the critical temperature of thermal decomposition, the order of molecular stability for involved nitric esters is found to be MHN<XPN<TMPTN<SHN<NIBGT<ETN<PETN<DiPEHN. The introduction of function groups to the tertiary carbon is in favor of increasing thermal stability due to increase of symmetry and rigidity of the molecule. The decomposition kinetics was described in terms of the Johnson-Mehl-Avrami and Šesták-Berggren models. Two types of kinetic behavior were observed and most nitrate esters followed typical decomposition kinetics close to the first order reaction. However, certain materials showed complex behavior caused by overlapping of more mechanisms/processes, which were represented either by simultaneous evaporation and decomposition or by different decomposition mechanisms originating from varying morphology and structure of the samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.