Abstract
Manipulating the N release from high-N crop residues by simultaneous mixing of these residues with organic biological waste (OBW) materials seems to be a possible method to reduce NO3− leaching. The aim of this study was to examine whether the incorporation of OBW materials together with a high-N crop residue (celery) had also an effect on N2O emission from horticultural soil under short-term and optimised laboratory conditions. A sandy loam soil and celery residues were mixed with different OBW materials and brought into PVC tubes at 80% water-filled pore space and 15°C. Every 2.5 h, a gas sample was taken and analysed by gas chromatography for its N2O concentration. The soil amended with only celery residues had a cumulative N2O emission of 9.6 mg N kg−1 soil in 50 h. When the celery residues were mixed with an OBW material, the N2O emission was each time lower than the emission from the celery-only treatment (between 3.8 and 5.9 mg N kg−1 soil during maximum 77 h), except with paper sludge (17.2 mg N kg−1 soil in 100 h). The higher N2O emission from the paper sludge treatment was probably due to its unusually low C:N ratio. Straw, green waste compost 1 (GWC1) and 2 (GWC2), saw dust, and tannic acid reduced the N2O emission of the celery treatment by 40 to 60%. Although the N2O reduction potential can be expected to be lower and with differing dynamics under field conditions, this study indicates that apart from reducing NO3− leaching, OBW application may at the same time reduce N2O emissions after incorporation of high-N crop residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.