Abstract

Centrifugal aerators are a vital piece of equipment in water treatment. To improve the efficiency and economy of their operation, a study of their mixing chamber structure and submergence depth was carried out using a combination of numerical simulations and experiments. A centrifugal aerator dissolved oxygen (DO) test bench was built and the numerical simulation was compared with the experiment, the inlet air flow rate showing only a 2.23% error, which verifies the reliability of the numerical simulation. The results show that the capacity of oxygen dissolved in the aeration tank increases and then decreases as the relative area ratio (ð) of the mixing chamber increases, reaching the best capacity at ð = 8.38. In the case of different submergence coefficients (β), the gas volume fraction increased by 31.29% on average at β = 0.15; the standard oxygen transfer rate (SOTR) increased and then decreased with the increase of β, with an average increase of 56.6%. Moreover, the oxygenation performance of centrifugal aerators was significantly improved by the reasonable submergence depth and the structure of the mixing chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call