Abstract
Silicon carbide (SiC) is a wide band gap semiconductor being developed for high temperature, high power, and high frequency device applications. For the manufacturing of SiC to semiconductor substrate, many researchers have studied on the subject of SiC polishing. However, SiC faces many challenges for wafer preparation prior to epitaxial growth due to its high hardness and remarkable chemical inertness. A smooth and defect free substrate surface is important for obtaining good epitaxial layers. Therefore, hybrid process, chemical mechanical polishing (CMP) has been proposed to achieve epi-ready surface. In this paper, the material removal rate (MRR) is investigated to recognize how long the CMP process continues to remove a damaged layer by mechanical polishing using 100 nm sized diamond, and the authors tried to find the dependency of mechanical factors such as pressure, velocity and abrasive concentration using single abrasive slurry (SAS). Especially, the authors tried to get an epi-ready surface with mixed abrasive slurry (MAS). The addition of the 25nm sized diamond in MAS provided strong synergy between mechanical and chemical effects resulting in low subsurface damage. Through experiments with SAS and MAS, it was found that chemical effect (KOH based) was essential and atomic-bit mechanical removal was efficient to remove residual scratches in MAS. This paper concluded that SiC CMP mechanism was quite different from that of relatively soft material to achieve both of high quality surface and MRR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.