Abstract

An investigation of direct drive capsules with different shell thicknesses and gas fills was conducted to examine the amount of shock induced (Richtmyer-Meshkov) mix versus Rayleigh-Taylor mix from deceleration of the implosion. The RAGE (Eulerian) code with a turbulent mix model was used to model these capsules for neutron yields along with time-dependent mix amounts. The amount of Richtmyer-Meshkov induced mix from the shock breaking out of the shell is about 0.1 μg (0.15 μm of shell material), while the Rayleigh-Taylor mix is of order 1 μg and determines the mixed simulation yield. The simulations were able to calculate a yield over mix (YOM) ratio (experiment/mix simulation) between 0.5 and 1.0 for capsules with shell thicknesses ranging from 7.5 to 20 μm and with gas fills between 3.8 and 20 atm of D2 or DT. The simulated burn averaged Tion values typically lie with 0.5 keV of the data, which is within the measurement error. For capsules with shell thicknesses >25 μm, the YOM values drop to 0.10 ± 0.05, suggesting that some unmodeled effect needs to be accounted for in the thickest capsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.