Abstract
BackgroundStatistical and machine learning applications are increasingly popular in animal breeding and genetics, especially to compute genomic predictions for phenotypes of interest. Noise (errors) in the data may have a negative impact on the accuracy of predictions. The effects of noisy data have been investigated in genome-wide association studies for case–control experiments, and in genomic predictions for binary traits in plants. No studies have been published yet on the impact of noisy data in animal genomics. In this work, the susceptibility to noise of five classification models (Lasso-penalised logistic regression—Lasso, K-nearest neighbours—KNN, random forest—RF, support vector machines with linear—SVML—or radial—SVMR—kernel) was tested. As illustration, the identification of carriers of a recessive mutation in cattle (Bos taurus) was used. A population of 3116 Fleckvieh animals with SNP genotypes on the same chromosome as the mutation locus (BTA 19) was available. The carrier status (0/1 phenotype) was randomly sampled to generate noise. Increasing proportions of noise—up to 20%— were introduced in the data.ResultsSVMR and Lasso were relatively more robust to noise in the data, with total accuracy still above 0.975 and TPR (true positive rate; accuracy in the minority class) in the range 0.5–0.80 also with 17.5–20% mislabeled observations. The performance of SVML and RF decreased monotonically with increasing noise in the data, while KNN constantly failed to identify mutation carriers (observations in the minority class). The computation time increased with noise in the data, especially for the two support vector machines classifiers.Conclusions This work was the first to assess the impact of phenotyping errors on the accuracy of genomic predictions in animal genetics. The choice of the classification method can influence results in terms of higher or lower susceptibility to noise. In the presented problem, SVM with radial kernel performed relatively well even when the proportion of errors in the data reached 12.5%. Lasso was the second best method, while SVML, RF and KNN were very sensitive to noise. Taking into account both accuracy and computation time, Lasso provided the best combination.
Highlights
Statistical and machine learning applications are increasingly popular in animal breeding and genetics, especially to compute genomic predictions for phenotypes of interest
Residual missing single nucleotide polymorphism (SNP) genotypes were imputed based on linkage disequilibrium, using the localized haplotype clustering imputation method implemented in the computer package “Beagle” v.3 [27]
Lassopenalised logistic regression (Lasso) and Support Vector Machines using either a linear (SVML) reached 100% accuracy with no errors in the data
Summary
Statistical and machine learning applications are increasingly popular in animal breeding and genetics, especially to compute genomic predictions for phenotypes of interest. Noise (errors) in the data may have a negative impact on the accuracy of predictions. No studies have been published yet on the impact of noisy data in animal genomics. Statistical and machine learning approaches are used to identify patterns within data, with the primary objective of making predictions on future or unobserved data. Machine learning methods may be susceptible to biases, especially if we consider that the training data can contain errors. Errors in the data are known as noise, and can arise because of different reasons (e.g. instrument errors, quantization errors, environmental noise, model mis-specification, human errors, inherent randomness in the physical processes): the consequence is that the classifier learns from a distorted version of the actual data and its predictive ability will be biased upwards or downwards, or randomly unreliable [11, 12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.