Abstract
The potential of neural networks for classification problems has been established by numerous successful applications reported in the literature. One of the major assumptions used in almost all studies is the equal cost consequence of misclassification. With this assumption, minimizing the total number of misclassification errors is the sole objective in developing a neural network classifier. Often this is done simply to ease model development and the selection of classification decision points. However, it is not appropriate for many real situations such as quality assurance, direct marketing, bankruptcy prediction, and medical diagnosis where misclassification costs have unequal consequences for different categories. In this paper, we investigate the issue of unequal misclassification costs in neural network classifiers. Through an application in thyroid disease diagnosis, we find that different cost considerations have significant effects on the classification performance and that appropriate use of cost information can aid in optimal decision making. A cross‐validation technique is employed to alleviate the problem of bias in the training set and to examine the robustness of neural network classifiers with regard to sampling variations and cost differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.