Abstract

This study aimed to investigate long-range atmospheric transport of selected POPs released due to the effects of military conflicts in regions to the south of Turkey's borders. Ten locations were selected to deploy passive air samplers at varying distances to the border on a southeast-west transect of the country, proximity-grouped as close, middle, and far. Sampling campaign included winter and transition months when desert dust transport events occur. Hypothesis of the study was that a decreasing trend would be observed with increasing distance to the border. Group comparisons based on statistical testing showed that PBDE-183, Σ45PCB, and dieldrin in winter; PBDE-28, PBDE-99, PBDE-154, p,p′-DDE, Σ14PBDE, and Σ25OCP in the transition period; and PBDE-28, PBDE-85, PBDE-99, PBDE-154, PBDE-190, PCB-52, Σ45PCB, p,p′-DDE, and Σ25OCP over the whole campaign had a decreasing trend on the transect. An analysis of concentration ratio to the background showed that long-range atmospheric transport impacted the study sites, especially those of close group in comparison to the local sources. Back-trajectory analyses indicated that there was transport from the conflict areas to sites in the close-proximity group, while farther sampling locations mostly received air masses from Europe, Russia, and former Soviet Union countries, followed by North Africa, rather than the military conflict areas. In consequence, decrease in concentrations with distance and its relation to molecular weight through proportions, diagnostic ratios, analysis of concentration ratio to the background, and back-trajectory analyses support the effect of transport from the military-conflict area to its north.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call