Abstract

We used mild hypothermia (34°C) and mild hyperthermia (39°C) to examine aging at the cellular level in relation to DNA damage and repair. With the filter elution technique we monitored spontaneous single-strand breaks (SSBs) and double-strand breaks (DSBs) in DNA during in vitro aging at 34°C, 37°C and 39°C of normal human diploid fibroblasts (HDF). DNA repair was assessed after ionizing and non-ionizing (ultraviolet) radiation of HDF at different population doubling levels (PDLs): the former was assayed by filter elution and the latter by unscheduled DNA synthesis. Survival was assessed by trypan blue dye exclusion and colony formation. Cells at 37°C achieve a higher cumulative PDL (67 ± 6) than cells at 39°C (60 ± 5) or at 34°C (55 ± 6). The level of spontaneous SSBs and DSBs, and radiosensitivity of DNA to either 6 Gy or 100 Gy gamma rays, do not change with in vitro age at any of the three temperatures. Repair of SSBs (induced by 6 Gy) and DSBs (induced by 100 Gy) does not change with in vitro age: rejoining is 86–104% complete by 60 min repair and generally does not differ across temperatures. Response to non-ionizing radiation (254 nm, 75, 150, 300 ergs/mm 2) does not change with in vitro age at 37°C or 39°C, whereas excision repair increases with age at 34°C even though cell survival does not. The results do not support the rate of living theory of aging (Pearl, R., The Rate of Living, University of London Press, London, 1928) as applied to temperature effects on HDF aging in vitro (as measured by proliferative lifespan) and on their response to radiation-induced DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.