Abstract

Previous studies have shown that sensory neurons that are the most informative of the stimulus tend to be the best correlated with the subject's perceptual decision. We wanted to know whether this relationship might also apply to short time segments of a neuron's response. We asked whether spikes that conveyed more information about a motion stimulus were also more tightly linked to the perceptual behavior. We examined single-neuron activity in middle temporal (MT) area while monkeys performed a motion-detection task. Because of a slow stimulus update (every 27 ms), activity in many MT neurons was entrained and phase-locked to the stimulus. These stimulus-entrained neuronal oscillations allowed us to separate spikes based on phase. We observed a large amount of variability in how spikes at different phases of the oscillation encoded the stimulus, as revealed by the spike-triggered average of the motion. Spikes during certain phases of the cycle were much more informative about the presence of coherent motion than others. Importantly, we found that the phases that were the most informative about the motion stimulus were also more correlated with the behavioral performance and reaction time of the animal. Our results suggest that the relationship between a neuron's spikes, the stimulus, and behavior can vary on a time scale of tens of milliseconds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call