Abstract

In this study, a new process sequence of non-circular and circular drawing is designed using finite element simulations and is proposed to produce strengthened wires in a simple continuous way for industrial applications. The developed non-circular drawing (NCD) sequence was experimentally applied to low carbon steel at room temperature. Mechanical properties, microstructure and texture evolution of the specimen processed by the newly proposed process and conventional wire drawing (WD) were investigated by tension test, electron backscattering diffraction (EBSD), and X-ray diffraction (XRD) for comparison. According to the present investigation, the specimen processed by the NCD sequence achieved 10.7% higher ultimate tensile strength (UTS) with slightly higher reduction of area at fracture than the one processed by the WD for the two-pass with the same area reductions. Furthermore, the UTS value (612MPa) of the drawn wire by the two-pass NCD sequence was equivalent to the level of 602MPa processed by the three-pass WD. From the EBSD results, the areal fraction of the low angle grain boundaries (1.12μm−1) of the specimen processed by the NCD was higher than that (0.78μm−1) of the specimen processed by the WD for the two-pass. The pole figures and ODFs of the specimen processed by the NCD sequence showed typical drawing and rolling textures. It is demonstrated that the non-circular drawing sequence could be beneficial in producing high-strength wires with comparable ductility through grain refinement according to the observations made in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.