Abstract

Based on a general fracture mechanics approach, this paper attempts to correlate macroscopic fracture properties with micromechanical behaviour in wooD. In the first part, the influence of orientation, cell size and other structural features of wood on toughness, fatigue resistance and fracture morphology is described. Subsequently, experimental observations of crack tunnelling effects are reported which, coupled with direct crack tip strain measurements and a verification of the influence of specimen thickness on fracture properties, confirm the existence of stress state variations across a crack front in wood, and the corresponding effects on fracture behaviour. Irreversible crack-tip deformation modes are identified, involving intercellular debonding, cell twisting and buckling, and the role of stress triaxiality is discussed. A strain criteria for the fracture of pre-notched bulk wood specimens is developed, based on an observed linear relationship between notch root radius and crack opening displacement for fracture initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call