Abstract

Hot ductility of the alloy Ti-6Al-2Nb-lTa-0.8Mo has been correlated with microstructure and fracture behavior. Low hot ductility was found to be associated with strain localization within the grain boundary alpha phase, producing void formation along the prior-beta grain boundaries and inter-granular fracture. Microstructural features that appear to be critical to the strain localization process are beta grain shape and alpha phase morphology. For the case of Widmanstatten + grain boundary alpha phase morphologies, equiaxed prior-beta grains formed by annealing above the beta transus are required to produce significant strain localization. For the beta processed structure with elongated beta grains due to working above the beta transus temperature, the orientation of the grain boundary alpha phase limits strain localization due to low resolved shear stress. The martensitic Widmanst↦ten alpha prime structure formed by quenching from above the beta transus temperature rapidly forms grain boundary alpha upon reheating to temperatures high in the alpha + beta phase field. This results in strain localization in the grain boundary regions in an apparently similar manner to that observed in the Widmanstatten + grain boundary alpha phase morphologies with equiaxed prior-beta grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.