Abstract

The aim of this study was to show the effect of manufacturing defects in a commercially pure Ti Grade 2 produced by a laser beam powder bed fusion (PBF-LB) process on its high-cycle fatigue life. For this purpose, the high-cycle fatigue performance of PBF-LB Ti Grade 2 was compared to its ultrafine-grained (UFG) counterpart processed by hydrostatic extrusion exhibiting a similar mechanical properties under static tensile. The yield strength of the PBF-LB and UFG Ti Grade 2 was 740 and 783 MPa, respectively. The PBF-LB Ti Grade 2 consisted of a typical columnar of prior β grains with an acicular martensite α’ microstructure, while UFG Ti Grade 2 was mainly composed of fine, equiaxed α phase grains/subgrains with a size of 50–150 nm. A residual porosity of 0.21% was observed in the PBF-LB Ti Grade 2 by X-ray computed tomography, and, despite similar yield strength, a significantly higher endurance fatigue limit was noticed for UFG Ti Grade 2 (420 MPa) compared to PBF-LB Ti Grade 2 (330 MPa). Fatigue striation analysis showed that the fatigue crack propagation rate was not affected by manufacturing technology. In turn, the high-cycle fatigue life was drastically reduced as the size of manufacturing defects (such as pores or lack of fusion zones) increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call