Abstract

BackgroundThe aim of the study was to evaluate the effects of micro-electric current on sodium hypochlorite’s (NaOCl’s) tissue-dissolution abilities, compared with other activation methods, including sonic, ultrasonic, pipetting, and temperature.MethodsBovine muscle tissues (n = 154) with standard sizes and weights were prepared and divided into two temperature groups: room temperature and 45 °C. Each temperature group was divided into seven sub-groups by activation methods: D = distilled water (−control); NaOCl = 5.25 % passive NaOCl (+ control); P = 5.25 % NaOCl with pipetting; SA = 5.25 % NaOCl with sonic activation; UA = 5.25 % NaOCl with ultrasonic activation; E-NaOCl = 5.25 % NaOCl with micro-electric current; and E-NaOCl + P = 5.25 % NaOCl with micro-electric current and pipetting. Specimens were weighed before and after treatment. Average, standard deviation, minimum, maximum, and median were calculated for each group. Resulting data were analyzed statistically using multi-way ANOVA and Tukey HSD tests. The level of the alpha-type error was set at < 0.05.ResultsAt room temperature, the E-NaOCl + P group dissolved the highest amount of tissue (p < 0.05), and the UA, SA, and P groups dissolved significantly higher amounts of tissue than did the positive control or E-NaOCl groups (p < 0.05). At 45 °C, there was no significant difference between the SA and E-NaOCl groups (p > 0.05), and the E-NaOCl + P group dissolved a higher amount of tissue than any other group (p < 0.05).ConclusionsUsing NaOCl with micro-electric current can improve the tissue-dissolving ability of the solution. In addition, this method can be combined with additional techniques, such as heating and/or pipetting, to achieve a synergistic effect of NaOCl on tissue dissolution.

Highlights

  • The aim of the study was to evaluate the effects of micro-electric current on sodium hypochlorite’s (NaOCl’s) tissue-dissolution abilities, compared with other activation methods, including sonic, ultrasonic, pipetting, and temperature

  • Successful root-canal treatment depends on removing micro-organisms, which cause infection of pulp tissue, and dentin debris from the root canal [1, 2]

  • 5.25 % passive sodium hypochlorite solution (NaOCl) has many properties, activation techniques as an external factor affect the dynamic balance of NaOCl use, increasing its tissue dissolution ability, based on activation with sonic

Read more

Summary

Introduction

The aim of the study was to evaluate the effects of micro-electric current on sodium hypochlorite’s (NaOCl’s) tissue-dissolution abilities, compared with other activation methods, including sonic, ultrasonic, pipetting, and temperature. Successful root-canal treatment depends on removing micro-organisms, which cause infection of pulp tissue, and dentin debris from the root canal [1, 2]. Residual pulpal tissue, infected dentin, and bacteria remnants in the root-canal system can cause failure of the root-canal treatment [4]. NaOCl has a dynamic balance that tends to change direction continuously, as the formula below shows [8]. External factors that change this dynamic balance change NaOCl’s efficiency. NaOCl has many properties, activation techniques as an external factor affect the dynamic balance of NaOCl use, increasing its tissue dissolution ability, based on activation with sonic

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.