Abstract

Acoustophoresis is an effective technique for particle manipulation. Acoustic radiation force scales with particle volume, enabling size separation. Yet, isolating sub-micron particles remains a challenge due to the acoustic streaming effect (ASE). While some studies confirmed the focusing ability of ASE, others reported continuous stirring effects. To investigate the parameters that influence ASE-induced particle motion in a microchannel, this study examined the effect of microchannel height and particle size. We employed standing surface acoustic wave (SSAW) to manipulate polystyrene particles suspended in the water-filled microchannel. The results show that ASE can direct particles as small as 0.31 µm in diameter to the centre of the streaming vortices, and increasing the channel height enhances the focusing effect. Smaller particles circulate in the streaming vortices continuously, with no movement towards the centres. We also discovered that when the channel height is at least 0.75 the fluid wavelength, particles transitioning from acoustic radiation-dominated to ASE-dominated share the same equilibrium position, which differs from the pressure nodes and the vortices’ centres. The spatial distance between particles in different categories can lead to particle separation. Therefore, ASE is a potential alternative mechanism for sub-micron particle sorting when the channel height is accurately adjusted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.