Abstract
In this paper, three structures (cylinder, square column, and hexagonal prism) of InGaAsP nanowire arrays are designed based on the excellent light trapping effect of nanostructures. The effects of nanowire aperture, array period, and nanowire height on the light absorption properties are simulated and analyzed using the finite-domain time-difference (FDTD) method. The photoelectron emission capacity of the nanowire arrays was also calculated using MATLAB. The results show that the cylindrical nanowire array has phenomenon of resonance enhancement (absorption peak) in the near-infrared band of 820–1000[Formula: see text]nm, and the shift of absorption peaks can be achieved by adjusting the geometric parameters. Meanwhile, the quantum efficiency is taken to 9.98%. These simulation results provide some reference for the photocathode design of InGaAsP in the near-infrared band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.