Abstract

The loss of bone density with age especially for women, is one of the most serious health complications affecting humans An increased incidence of fractured hips and long bones, and collapse of vertebrae are all due to loss of bone density. Demineralization of bone also poses one of the most severe limitations on long-duration manned space flight. This study investigates the hypothesis that chemical effects responsible for enhanced osteoblast differentiation and proliferation observed in-vitro and in-vivo at 1-gravity with bioactive glasses may be sufficient to prevent the turn-off of bone cells that occurs in μ-g or other reduced loading environments as a consequence of age or immobility. To conduct this work, the authors developed an embryonic mouse long-bone model to examine the interaction of bioactive surfaces and ions with the influence of a simulated μ-g environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.