Abstract

Serum albumins are the major soluble protein constituents of the circulatory system and have many physiological functions including transporting a variety of compounds. Methylamine, a monoamine with one positive charge complexes with protein and alters protein secondary structure. The aim of this study was to examine the interactions of human serum albumin (HSA) and bovine serum albumin (BSA) with methylamine at physiological conditions, using constant protein concentration and various monoamine concentrations. FTIR, UV–vis, CD and fluorescence spectroscopic methods were used to analyse methylamine binding mode, the binding constant and the effects of monoamine on HSA and BSA stability and conformations. Structural analysis showed that methylamine binds HSA and BSA via hydrophilic (polypeptide and amine polar groups) and hydrophobic interactions with overall binding constants of K met-HSA = 2.42 (±0.5) × 10 2 M −1 and K met-BSA = 1.34 (±0.3) × 10 3 M −1 with the number of bound methylamine around one molecule per protein. Methylamine complexation alters protein conformation by major reduction of α-helix and increase in random coil and turn structures indicating a partial protein unfolding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call