Abstract

In germinating spores of Onoclea sensibilis, the nucleus migrates to one end prior to an asymmetric cell division that partitions each spore into two daughter cells of unequal size. The larger cell develops into a protonema, whereas the smaller cell immediately differentiates into a rhizoid. When spores were germinated in the presence of methanol, nuclear migration was inhibited and most nuclei moved only to the raphe on the proximal side of the spores. Subsequent cell division partitioned each spore into daughter cells of equal size of which both developed into a protonema and neither into a rhizoid. Spores became sensitive to methanol at a time just prior to or coincident with nuclear migration and the effects of the alcohol were rapidly reversible as long as the spores were removed from methanol prior to the completion of cell division. Exposure to methanol prior to, but not during, nuclear migration or after mitosis had no effect upon rhizoid differentiation. The alcohol disrupted the formation of crosswalls after mitosis and they were often convoluted and irregularly branched. These results are consistent with the interpretation that methanol may disrupt a membrane site that plays an essential role in nuclear movement and rhizoid differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.