Abstract

Peroxide bleaching is significantly affected by transition and alkaline earth metals. Isolating the effects of different transition and alkaline earth metals on the reactions of peroxide with different representative lignin structures allows the separation of the positive from the negative contributions of these metal ions. In this work, five monomeric or dimeric phenolic lignin model compounds were treated with alkaline hydrogen peroxide in the absence or presence of Mn2+, Cu2+, Fe3+, and Mg2+. We followed the disappearance of the starting material and the progress of demethylation, radical coupling and oxalic acid formation were followed. Transition metals increased the reactivities of all the lignin model compounds with hydrogen peroxide in the order Mn2+> Cu2+> Fe3+, which is the same as the order of activity toward peroxide decomposition while Mg2+stabilized the system. Demethylation, radical coupling, and oxalic acid formation were all increased by the presence of transition metals in the system and decreased by the addition of Mg2+. The acceleration of the total degree of reaction and of the demethoxylation reactions improves peroxide bleaching, but the increase in the radical coupling reactions can affect the further bleachability of pulp while the increase in the formation of oxalic acid could lead to a greater probability of scaling.Key words: lignins, hydrogen peroxide, peroxide bleaching, reactivity, chemical pulps, metal compounds, alkali treatment, transition metals, delignification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call