Abstract

The effect of gold addition to iridium catalysts and the nature of active sites for citral hydrogenation were investigated over Ir–Au/TiO2 catalysts. All samples (Au/TiO2, Ir/TiO2 and Ir–Au/TiO2) were prepared by deposition-precipitation with urea (DPU). Bimetallic catalysts were synthetized by co-deposition at different Ir/Au atomic ratios (3, 1, 0.3). The catalysts were characterized by ICP, BET, H2–TPR, H2-Chemisorption, TEM, DRIFTS and XPS techniques. A partial coverage of iridium sites by gold atoms takes place as the gold amount in the catalyst increases as shown by chemisorption and XPS measurements. The latter also evidenced a trend consistent with modification of the electronic environment of iridium due to interaction with gold atoms. Also, compared to Ir/TiO2, the amount of Irδ+ species was higher in the bimetallic catalysts reaching a maximum in Ir–Au (1) sample. Characterization of the catalytic surface using DRIFTS of adsorbed CO evidenced a shift towards higher wavenumbers as a function of the gold content indicating, as the XPS results, a modification of the adsorption site. The catalytic activity for citral hydrogenation increased as a function of the gold content. The selectivity to unsaturated alcohol is related to the amount of Irδ+ species which in turns depends on the catalyst composition. For the most active sample Ir–Au (1), a suitable Irδ+/Ir0 ratio is already obtained when the catalyst is reduced at 573K and does not vary with reduction temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.