Abstract

The microvascular permeability to small and large molecules was studied during good and poor metabolic regulation in ten short duration juvenile diabetics. The following variables were measured; daily urinary albumin and beta2-microglobulin-excretion rates, whole body transcapillary escape rate of albumin (TER), glomerular filtration rate (GFR), capillary filtration coefficient (CFC), and capillary diffusion capacity (CDC). The urinary albumin and beta2-microglobulin concentration were measured by sensitive radioimmunoassays; TER was detemined from the initial disappearance of intravenously injected 125I-labelled human serum albumin; GFR was measured on the forearm by straingauge plethysmography and CDS for 51Cr-EDTA clearance; CFC was measured on the forearm by straingauge plethysmography and CDC, for 51Cr-EDTA was determined in the jyperaemic anterio tibial muscle by the local clearance technique. All the above mentioned variables, except CDC, were significantly increased during poor metabolic regulation, indicating a functional microangiopathy. The mechanisms of these alterations appear to be increased filtration pressure in the microcirculation and/or increased porosity of the microvasculature. The findings of increased microvascular albumin passage are compatible with the hypothesis that the organic - histologicallly demonstrated - diabetic microangiopathy is a long-term effect of periods of increased extravasation of plasma proteins, with subsequent protein deposition in the microvascular wall, i.e. the concept to plasmatic vasculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.