Abstract
Chiral monomer (M1 ), mesogenic and non-mesogenic crosslinking agents (C1 and C2 ), and the corresponding liquid crystalline elastomers (P1 and P2 series), have been synthesised. Their chemical structures have been characterised by Fourier transform infrared or 1H nuclear magnetic resonance and their phase behaviour investigated by differential scanning calorimetry, polarising optical miscoscopy, thermo-gravimetric analysis (TGA) and X-ray diffraction. The effect of the crosslinking unit on the phase behaviour of the elastomers has been studied. M1 showed a cholesteric oily streak and focal conic texture. C2 exhibited a nematic enantiotropic thread-like and schlieren texture, and a monotropic fan-shaped texture in the SA phase. Due to the introduction of the mesogenic crosslinking unit, elastomers, P2-1 −P2-5 , exhibited a cholesteric phase, while elastomers, P1-1 −P1-4 , derived from a non-mesogenic crosslinking unit, exhibit a SA phase. As the content of the crosslinking unit increased, the T g of the P1 series initially decreased and then increased, and the T i of the series decreased. In the P2 series the T g increased, but the T i initially increased and then decreased. TGA confirmed that all the elastomers had improved thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.