Abstract

We investigated the impact of mechanical stress on the cell characteristics of metal–oxide–nitride–oxide–semiconductor (MONOS) structures through experimental observations based on a curvature method for residual stress extraction and an analysis of the interface state. Residual stress induced on a substrate was observed to change from compressive to tensile depending on the tungsten process conditions; a high interface trap density was extracted under a high compressive stress environment based on a silicon bonding model. These interface trap densities were suggested as being attributable to a critical factor weakening the leakage characteristics of the MONOS structure. Besides, interface traps interrupted electron tunneling due to unintended charge trapping at the interface, which deteriorated memory characteristics indicated by a reduction in trap density. These results experimentally supported the effects of mechanical stress on device characteristics and reliability, which could be a straightforward way toward understanding the impact of stress for improved future flash memory applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call