Abstract

The present investigation is aimed at understanding the effect of a matrix on the phase transformation of biphasic embedded Pb–Sn alloy nanoparticles. The melting and solidification behaviours of eutectic (Pb26.1Sn73.9) nanoparticles embedded in icosahedral (IQC) as well as decagonal quasicrystalline (DQC) matrix have been studied. Electron microscopic observations reveal that the major portion of the alloy nanoparticle consists of body-centred tetragonal β-(Sn) with face-centred cubic (Pb) constituting the cap. (Pb) bears specific orientation relationships (OR) with the surrounding IQC matrix, whereas β-(Sn) does not have any specific OR. For alloy particles embedded in the DQC matrix, both (Pb) and β-(Sn) bear specific OR. In case of IQC matrix, differential scanning calorimetric measurements reveal sharp melting but diffuse solidification peaks for the embedded nanoparticles. On the other hand, sharp melting and solidification peaks are observed for the nanoparticles embedded in the DQC matrix. The IQC and DQC are heat-treated at different temperatures to observe the effect of the matrix on the phase transformation of the alloy nanoparticles. The formation of well- developed facets in the nano-particles and defects in the matrix have been found to play a crucial role in determining the phase transformation of the alloy nanoparticles in the heat-treated samples. The experimental observations are rationalized using available literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.