Abstract

This study was conducted to evaluate the influence of back-fat thickness (BF), at mating of sows, on the maternal and newborn circulating lipids, expression of placental fatty acids (FA) transporters and lipid accumulation in placenta. Full-term placentas were obtained by vaginal delivery from BFI (9-14mm; n=37), BFII (15-19mm; n=43) and BFIII (20-27mm; n=38) sows according to BF at mating, and frozen placental sections were analysed for fat accumulation. Blood samples were collected from the sows of day 105 pregnancy and from cord blood at delivery. mRNA and protein expression levels were evaluated with real-time RT-PCR and Western blotting. Our results demonstrated that BFII females had significantly increased litter weight and placental efficiency, decreased maternal triglyceride (TG) and non-esterified fatty acids (NEFA) levels, decreased maternal IL-6, TNFα and leptin levels compared to BFIII females (p<.05). BFIII sows were associated with significantly decreased newborn TG levels, increased newborn glucose, IL-6 and TNFα levels compared to BFI or BFII sows (p<.05). BFI and BFII females had significantly decreased placental TG, NEFA and cholesterol (CHOL) contents compared to BFIII females (p<.05). Moreover, decreased CD36, FATP1, FABP4, and FABP1 mRNA and protein and FATP4 protein expression, and increased LPL activity were also observed in BFIII group compared with BFII group (p<.05). PPARγ mRNA and protein and lipogenic genes such as SREBP-1c, ACSL1, ACCα, FAS and SCD mRNA expression were downregulated or upregulated, respectively, in the placentas of BFIII sows compared to BFI or BFII sows (p<.05). Overall, this study demonstrated that there is no advantage, in terms of litter live size, litter weight and placental FA transport and metabolism, in performing the mating of sows with BF>19mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.