Abstract

The widely used mesoscale meteorological model, MM5 and a recently released US EPA air quality model, Models-3/CMAQ were employed to investigate the effect of mass inconsistency in air quality modeling. During a 24-h simulation using a hydrostatic MM5 output, the mass inconsistent error, as measured by trace species concentration, grew by 242%. The nonhydrostatic simulation produced approximately 6 times larger mass inconsistent error than the hydrostatic model. This is because the nonhydrostatic model is not strictly mass consistent by neglecting terms representing pressure increase due to heating in a pressure perturbation equation, another form of the continuity equation. In both the hydrostatic and nonhydrostatic models, mass inconsistency was produced due to inconsistent numerical schemes and integral time steps between the meteorological model and the air quality model. Temporal interpolation of meteorological data in air quality modeling partly caused the mass inconsistency as well. The mass inconsistent error was removed successfully by conserving the mixing ratio of the trace species in both the hydrostatic and the nonhydrostatic cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.