Abstract
Taper design is known to influence corrosive behavior in taper junctions used in modular orthopaedic devices. Manufacturing tolerance of bore-cone tapers is a critical design parameter due to the effect on taper fit, but the effect of variations in manufacturing tolerance on the mechanics of taper junctions has not been well characterized, particularly in modular total knee replacement (TKR). The purpose of this study was to investigate the effect of manufacturing tolerance on stress and micromotion of modular TKR taper junctions. A 3D finite element (FE) model of a modular TKR taper junction was developed and assigned elastoplastic material properties. Model taper geometry was varied by perturbing the angle mismatch by 0.05° between ±0.25° and represented expected variation in manufacturing tolerance. Stress and micromotion were calculated during dynamic FE simulations for each taper junction geometry under varying activity loads and material combinations. Although an increase in angle mismatch generally resulted in higher stress and micromotion, plastic material behavior disrupted this trend for larger angle mismatches. Model predictions corresponded with corrosion behavior evident in vitro. If the FE results obtained here apply in vivo, the absence of elastoplastic material properties in a taper model may grossly overestimate the micromotion and underestimate corrosion behavior and ion release. It is recommended that manufacturing tolerances of bore-cone tapers in modular TKR designs should produce angle mismatches within 0.1° at the taper junction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.