Abstract

We empirically investigate the effect of class manifold entanglement and the intrinsic and extrinsic dimensionality of the data distribution on the sample complexity of supervised classification with deep ReLU networks. We separate the effect of entanglement and intrinsic dimensionality and show statistically for artificial and real-world image datasets that the intrinsic dimensionality and the entanglement have an interdependent effect on the sample complexity. Low levels of entanglement lead to low increases of the sample complexity when the intrinsic dimensionality is increased, while for high levels of entanglement the impact of the intrinsic dimensionality increases as well. Further, we show that in general the sample complexity is primarily due to the entanglement and only secondarily due to the intrinsic dimensionality of the data distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.