Abstract

Surface oxides formed at ferrite grain boundaries of low carbon steels annealed at 700 °C in 5% hydrogen 95% nitrogen atmosphere were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Two different oxides (Fe,Mn)O and MnCr 2O 4 are observed at the grain boundaries and the former is five-fold coarser than the latter. It was found at the annealing temperature of 700 °C that the mean particle size of the (Fe,Mn)O depends on the manganese content, and the mean particle size and distribution of the MnCr 2O 4 dependent on chromium, but independent of manganese. It is unlikely the coarse (Fe,Mn)O precipitates pose any potential risks to the electrolytic tin coating quality as they will be removed by the pickling operation prior to tinning. The potential risks posed by the MnCr 2O 4 to the quality of the electrolytic tin coating of tinplate products can be minimized by restricting the chromium content of the steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call