Abstract

AbstractThe use of maleinized linseed oil (MLO) as a potential biobased plasticizer for poly(lactic acid) (PLA) industrial formulations with improved toughness was evaluated. MLO content varied in the range 0–20 phr (parts by weight of MLO per hundred parts by weight of PLA). Mechanical, thermal and morphological characterizations were used to assess the potential of MLO as an environmentally friendly plasticizer for PLA formulations. Dynamic mechanical thermal analysis and differential scanning calorimetry revealed a noticeable decrease in the glass transition temperature of about 6.5 °C compared to neat PLA. In addition, the cold crystallization process was favoured with MLO content due to the increased chain mobility that the plasticizer provides. PLA toughness was markedly improved in formulations with 5 phr MLO, while maximum elongation at break was obtained for PLA formulations plasticized with MLO content in the range 15–20 phr. Scanning electron microscopy revealed evidence of plastic deformation. Nevertheless, phase separation was detected in plasticized PLA formulations with high MLO content (above 15–20 phr MLO), which had a negative effect on overall toughness. © 2017 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.