Abstract

A unique group of immunoglobulin-binding proteins (IGBPs), produced by ixodid male ticks during the latter half of their prolonged feeding period, improves the feeding performance of co-feeding females. As a follow-up to this observation, we investigated whether male tick feeding also affects the feeding of other developmental stages. Immature stages of Rhipicephalus sanguineus (Latreeille) and Amblyomma americanum (L.) were fed on rabbits in the presence or absence of conspecific males. The mean weight of larvae and nymphs of both species that fed around males and detached from the host on the first day of dropping was significantly higher than when the immature ticks fed on rabbits in the absence of males. However, larvae of both species and nymphs of R. sanguineus that fed slower and detached on the second day of dropping did not show significant differences in weight. A similar pattern was observed for A. americanum nymphs although, unlike R. sanguineus, the presence of males also influenced the feeding performance of the nymphs that fed slowly and detached on the second day of drop-off. The improved feeding performance demonstrated by immature ticks in the presence of males may be due to immunomodulatory saliva proteins, such as immunoglobulin-binding proteins (IGBPs) that are introduced into the co-feeding site. The results are considered in relation to the distribution of ixodid tick species on their natural hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.