Abstract

We simulate the effect of latitudinal variations in the location of star spots, as well as their magnetic field strength, on stellar angular momentum loss (AML) to the stellar wind. We use the Michigan solar corona global magnetohydrodynamic model, which incorporates realistic relation between the magnetic field topology and the wind distribution. We find that the spots' location significantly affects the stellar wind structure, and as a result, the total mass loss rate and AML rate. In particular, we find that the AML rate is controlled by the mass flux when spots are located at low latitudes but is controlled by an increased plasma density between the stellar surface and the Alfven surface when spots are located at high latitudes. Our results suggest that there might be a feedback mechanism between the magnetic field distribution, wind distribution, AML through the wind, and the motions at the convection zone that generate the magnetic field. This feedback might explain the role of coronal magnetic fields in stellar dynamos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.