Abstract

The resistivity of Hg0.89Mn0.11Te has been measured by the superconducting quantum interference device magnetometer in the temperature range from 5 to 200 K under the applied magnetic field of 1, 2, 4 and 6.5 Tesla, respectively, compared with that of no-magnetic field. The results show that the resistivity increases with increase applied magnetic field at higher temperature from 80 to 200 K, but decreases at lower temperature from 5 to 25 K. There exists a transitive range from 25 to 80 K, where the variation of the resistivity shows different tendencies depending on the strength of magnetic field. Maximum difference of resistivity under 6.5 Tesla from that without magnetic field in the temperature range from 30 to 200 K is only about 5 Ω·cm, but it increases up to 3 orders of magnitude at 5 K. The analysis shows that the variation of resistivity of Hg0.89Mn0.11Te under the magnetic field is the algebraic sum of the transverse direction magnetoresistance effect and the sp-d exchange interaction effect. TDRME plays major role in the high temperature range. However, with the decrease of temperature, the effect of sp-d EI on the resistivity gradually exceeds that of the transverse direction magnetoresistance effect through the transitive range, and becomes the dominant effect in the temperature range from 5 to 25 K, which leads to the dramatic decrease of resistivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.