Abstract

Injectable bioactive glass-based pastes represent promising biomaterials to fill small bone defects thus improving and speed up the self-healing process. Accordingly, injectable nanocomposite pastes based on bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane (GPTMS) were here synthesized via two different glasses 64SiO2. 27CaO. 4MgO. 5P2O5 (mol.%) and 64SiO2.31CaO. 5P2O5 (mol.%). In particular, the effects of MgO on bioactivity, rheology, injectability, disintegration resistance, compressive strength and cellular behaviors were investigated. The results showed that the disintegration resistance and compressive strength of the composite were improved by the replacement of MgO; thus, leading to an increase in the amount of storage modulus (G′) from 26800 to 43400 Pa, equal to an increase in the viscosity of the paste from 136 × 103 to 219 × 103 Pa s. Since the release rate of ions became more controllable, the formation of calcite was decreased after immersion of the Mg bearing samples in the SBF solution. Specimens’ cytocompatibility was firstly verified towards human osteoblasts by metabolic assay as well as visually confirmed by the fluorescent live/dead staining; finally, the ability of human fibroblasts to penetrate within the pores of 3D composites was verified by a migration assay simulating the devices repopulation upon injection in the injured site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.