Abstract

Abstract The tensile deformation behavior and corresponding microstructure evolution of the Mg-4.7Gd-3.4Y-1.2Zn-0.5Zr (at. %) magnesium alloy with long period stacking structure (LPSO) are studied by electron backscatter diffraction (EBSD) and slip lines methods. The results show that less and very small size of twins is observed in the grains with high value of Schmid factor for twinning, which indicates that the growth of the {10–12} twinning deformation is prevented by the LPSO phase. The prismatic lines present in grains of which the prismatic slip Schmid factor is above 0.4. The favorable orientation and LPSO phase synergistically promote the activation of prismatic slip. The inhomogeneous rotation of the grains during deformation is the reason for the microcrack at grain boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call