Abstract
We investigated the response of the photosyn- thetic apparatus during an episode of extreme low winter temperature in Quercus ilex subsp. ballota (Desf.) Samp., a typical Mediterranean evergreen species in the Iberian peninsula. Both plants in a woodland located at high altitude (1,177 m. a.s.l.) and potted plants obtained from acorns of the same populations grown at low altitude (225 m. a.s.l.) were analyzed. Net CO2 assimilation rate was negative and there was a marked decrease in photosystem II (PSII) efficiency during winter in leaves of the woodland population (high altitude individuals). These processes were accompanied by increases in non- photochemical quenching (NPQ) and in the de-epoxidated carotenoids within the xanthophyll cycle, mechanisms aimed to dissipate excess energy. In addition, these de- epoxidated carotenoids were largely preserved during the night. There was no chlorophyll bleaching during the winter, which suggests that leaves were not experiencing photoinhibitory damage. In fact, the net photosynthetic rate and the PSII efficiency recovered in spring. These changes were not observed, or were much more reduced, in individuals located at lower altitude after a few frosts. When the response to rapid temperature changes (from 20°C to �5°C and from �5°C to 20°C) was studied, it was found that the maximum potential PSII efficiency was fairly stable, ranging from 0.70 to 0.75. The rest of the photosynthetic parameters measured, actual and intrinsic PSII efficiency, photochemical and NPQ, responded immediately to the changes in temperature and, also, the recovery after cold events was practically immediate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.