Abstract

Impaired wound healing in diabetic individuals presents a significant clinical challenge, and this study explores the impact of low-temperature microwave plasma in an argon atmosphere, a type of cold atmospheric plasma (CAP), on wound regeneration in diabetic rats. The findings reveal that this CAP treatment accelerates wound regeneration in diabetic rats, promoting faster wound closure, reducing inflammation, and enhancing critical regenerative processes such as angiogenesis, collagen synthesis, and extracellular matrix remodeling. Additionally, CAP exhibits anti-inflammatory effects by modulating the immune response towards a pro-regenerative state. These results underscore the potential of CAP in diabetic wound care, offering a promising approach to address delayed wound healing in diabetic patients and potentially improving the quality of life for those with chronic diabetic wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call