Abstract
The ability of a lactic acid bacterium to survive passage through the gastrointestinal tract is a key point in its function as a probiotic. In this study, protein synthesis by the probiotic bacterium, Lactobacillus reuteri, was analyzed under transiently decreased pH conditions. L. reuteri cells grown to the midexponential growth phase at 37 degrees C were exposed to transient (1 h) low-pH stresses from pH 6.8 to pH 5.0, 4.5, or 4.0. 2-DE allowed us to identify 40 common proteins that were consistently and significantly altered under all three low-pH conditions. PMF was used to identify these 40 proteins, and functional annotation allowed them to be distributed to six major classes: (i) transport and binding proteins; (ii) transcription-translation; (iii) nucleotide metabolism and amino acid biosynthesis; (iv) carbon energy metabolism; (v) pH homeostasis and stress; and (vi) unassigned. These findings provide new insight into the inducible mechanisms underlying the capacity of gastrointestinal L. reuteri to tolerate acid stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.