Abstract

AbstractThis work aims to evaluate the impact of small amounts of hydrogen on the hydrogen-assisted cracking (HAC) of 17-4 martensitic stainless steel (SS) prepared by additive manufacturing (AM). To elucidate the effect of processing on the hydrogen–material interactions, the obtained results were compared with a conventionally manufactured (CM) counterpart. It was found that the hydrogen uptake of AM 17-4 SS is higher compared to CM; however, its resistance to HAC is improved. These differences are attributed to the presence of stronger hydrogen trapping sites, retained austenite and the absence of Nb-rich precipitates in the AM 17-4 SS. The effect of processing on the microstructure and the susceptibility to hydrogen-induced damage and hydrogen embrittlement is discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call