Abstract
Microdamage accumulation in bone is one of the mechanisms for energy dissipation during the fracture process. Changes in the ultrastructure and composition of bone constituents due to aging or diseases could affect microdamage accumulation. Low concentration (1 mM) of sodium fluoride (NaF) has been used in this study to investigate the effect of ultrastructural changes on microdamage accumulation in mouse tibias following free-fall impact loadings. Twenty-two tibias were divided randomly into control and NaF-treated groups. Free-fall impact loading was conducted twice on each tibia to produce microdamage. The elastic modulus of NaF-treated tibias decreased significantly after the impact loadings, while there was no significant difference in the modulus of untreated samples between pre- and post-damage loadings. Microdamage morphology analysis showed that less and shorter microcracks existed in NaF-treated tibias compared with control bones. Meanwhile, more and longer microcracks were observed in tensile regions in untreated samples compared with that in compressive regions, whereas no significant difference was observed between tensile and compressive regions in NaF-treated bones. The results of this study indicate that more energy is required to generate microcracks in NaF-treated bone than in normal bone. A low concentration of fluoride treatment may increase the toughness of bone under impact loading. This study focused on the effect of ultrastructural changes on microdamage in bones under impact loadings. The elastic modulus of the NaF-treated tibias decreased significantly after impact loadings. Less and shorter microcracks existed in NaF-treated tibia bones. More energy is required to generate microdamage in NaF-treated bones. A low concentration of fluoride treatment may increase the toughness of bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.